Gauß-Jordan-Algorithmus Rechner
Hier kannst du kostenlos online lineare Gleichungssysteme mit Hilfe des Gauß-Jordan-Algorithmus Rechner mit komplexen Zahlen und einer sehr detaillierten Lösung lösen. Mit unserem Rechner ist es möglich sowohl Gleichungssysteme mit einer eindeutigen Lösung, als auch Gleichungssysteme mit unendlich vielen Lösungen, zu lösen. In diesem Fall bekommt man die Lösung der verschiedenen Variablen in Abhängigkeit von der unbestimmten Variable. Du kannst außerdem deine linearen Gleichungssysteme auf Konsistenz mit Hilfe dieses Rechners überprüfen.
Haben Sie fragen? Lesen Sie die Anweisungen.
Über die Methode
Um ein lineares Gleichungssystem mit Hilfe des Gauß-Jordan-Algorithmus zu lösen, musst du folgende Schritte ausführen.- Setze eine erweiterte Matrix.
- Tatsächlich ist der Gauß-Jordan-Algorithmus aufgeteilt in die Vorwärtseliminierung und die Rückwärtssubstitution. Die Vorwärtseliminierung des Gauß-Jordan Rechners reduziert die Matrix auf eine Stufenform. Die Rückwärtssubstitution des Gauß-Jordan Rechners reduziert die Matrix auf die reduzierte Stufenform. Aber eigentlich ist es praktischer, alle Elemente, die sich über und unter der Diagonalen befinden, zu eliminieren, wenn man den Gauß-Jordan Rechner benutzt. Unser Rechner verwendet diese Methode.
- Es ist wichtig anzumerken, dass eine Matrix, die links eine Nullzeile besitzt, während auf der rechten Seite (Spalte mit konstanten Termen) keine Null vorzufinden ist, inkonsistent ist. Solch ein lineare Gleichungssystem besitzt keine Lösung.
Um den Gauß-Jordan-Algorithmus besser zu verstehen, solltest du ein Beispiel eingeben, die Option "sehr detaillierte Lösung" auswählen und anschließend die Lösung untersuchen.